Association Between Text Neck and Neck Pain in Adults

Igor Macedo Tavares Correia, MSc, a Arthur de Sá Ferreira, PhD, a Jessica Fernandez, MSc, a Felipe José Jandre Reis, PhD, b,c Leandro Alberto Calazans Nogueira, PhD, a,b and Ney Meziat-Filho, PhD a

Neck pain (NP) is the fourth cause of disability in the world and has continued to grow considerably over the past decade.1–3 It has been hypothesized that the flexed posture of the neck and head adopted for reading and typing while using smartphones is related to the increased prevalence of NP and other physical symptoms.4,5 In his alarming 2014 study, Hansraj6 estimated that while in a neutral position the head weighs a relative 10 to 12 lbs, compared to 27 lbs at 15°, 40 lbs at 30°, 49 lbs at 45°, and 60 lbs at 60°. Lee et al7 showed that smartphone users maintain head flexion of 33° to 45° when using smartphones. In 2017, Cuéllar et al8 claimed that text neck was an epidemic of the modern era of cell phones. The term text neck has arisen, being defined as the “detrimental” posture of cervical flexion adopted while using smartphones.8–11 Nevertheless, a cross-sectional study of Damasceno et al10 did not find an association of text neck with NP or frequency of NP. However, there were some limitations, such as a subjective photographic assessment of smartphone posture, a small sample (n = 150) of participants, and restricted age range (18- to 21 years’ old).11 Gustafsson et al12 reported no association between smartphone use duration and new episodes of NP in a longitudinal study; moreover, the authors did not evaluate the posture adopted during the smartphone use. Therefore, we sought to investigate the association of text neck by the cervical flexion angle during smartphone use with NP in a larger number of individuals with a broader age range.

MATERIAL AND METHODS
This is a cross-sectional study enrolling 582 volunteers aged between 18 and 65 years, who had a smartphone and were willing to participate in research. Data were collected by the

Summary of Background Data.

Objective.

Study Design.

Methodology.

Sample.

Outcome Measures.

Analysis.

Conclusion.

Acknowledgments.

References.

Disclosure.

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

DOI: 10.1097/BRS.0000000000003854

From the 1Centro Universitário Augusto Motta, UNISUAM, Rio de Janeiro, Brazil; 2Instituto Federal do Rio de Janeiro; Rio de Janeiro, Brazil; and 3Department of Clinical Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

The manuscript submitted does not contain information about medical device(s)/drug(s).

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001) funds were received in support of this work. No relevant financial activities outside the submitted work.

Address correspondence and reprint requests to Igor Macedo Tavares Correia, MSc, Centro Universitário Augusto Motta, UNISUAM, Rua Dona Isabel 94, Bonsucesso, Rio de Janeiro 21041-010, Brazil; E-mail: igorcitoreaisfio@gmail.com.
researchers under a tent located in a busy area on the university campus from November 2018 to November 2019. Commuters were invited to participate through advertising signs beside the tent. Exclusion criteria were spinal surgery or any diseases that prevented the individual from adopting the unsupported orthostatic position. Individuals with significant cognitive impairment to the point of not understanding the self-completion questionnaire were excluded as well as individuals who did not own smartphones. The study protocol followed the recommendations of The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement.13

The study was previously approved by the Ethics Committee of the Augusto Motta University Center (approval number 3.030.275), in accordance with national resolution 466/2012. All participants signed an informed consent term after being informed about the nature of the study and the protocol to be performed.

Self-completion Questionnaire
Participants answered a self-reported questionnaire with sociodemographic (name, age, and sex) and anthropometric (body mass and height) questions. Daily smartphone usage duration was assessed with the following question: “On a typical weekday, how many hours per day do you spend reading, texting and playing games on your smartphone?” Nine response options were offered, the first started with “I only use the smartphone to talk” and then the responses ranged from “less than 1 hour per day” to “About 7 or more hours per day”. Regarding possible visual problems: “Do you have vision problems?”, with answer options “yes” or “no” and also “Do you have sight problems and wear glasses or contact lens?”, the response options were: “yes,” “no,” or “I wear them, but I forgot them.” Regarding posture concern, we asked: “Do you worry about your posture?” “Do you think your posture is appropriate when typing text on a cell phone?” and “Do you worry about your posture while using your cell phone when you type a text?”

The same orientation was given in the seated position in a chair without armrests. The measurement of the cervical angle with the CROM device was registered with the CROM inclinometer (Deluxe model, Performance Attainment Associates, Roseville, MN) was used to measure the flexion angle of the cervical region while typing on the smartphone, assuming that the greater the cervical flexion angle, the greater the text neck. As Damasceno et al.14

The smartphone dependence was investigated using the short version of the Smartphone Dependency Scale (SDS), translated into Portuguese. The total score ranges from 10 (minimum) to 60 (maximum), with the higher score indicating a higher chance of dependence on smartphone use.14

The variables anxiety, social isolation, and depression were assessed by applying the short psychosocial questionnaire, based on the validation by Kent et al.15 There were four questions as follows: anxiety—“Do you feel anxious?” social isolation—“Do you feel socially isolated?” Answer options ranged from 0 (“no”) to 10 (“fairly”). Depression was assessed by the following two questions: “During the past month, have you often been bothered by feeling down, depressed, or hopeless?” and “During the past month, have you often been bothered by little interest or pleasure in doing things?” with response options ranging on a scale from 0 (“never”) to 10 (“all the time”). We included a fifth question about stress: “Do you feel stressed?” With response options ranging from 0 (“no stress”) to 10 (“very stressed”).

Lifestyle was assessed through the short-form International Physical Activity Questionnaire (IPAQ) that classifies the individual as sedentary, insufficiently active, active, or very active.16 Smoking habits were assessed by asking, “In the last 30 days, how many days did you smoke?” With eight response options ranging from “never smoked” to “every day for the last 30 days.” Based on the Subjective Health Complaints,17 sleep quality was assessed with the following question: “Did you have trouble sleeping in the last month?” with four answer options “nothing, a little, some, or seriously.”

Evaluation of Cervical Flexion Angle
The Cervical Range of Motion (CROM) inclinometer (Deluxe model, Performance Attainment Associates, Roseville, MN) was used to measure the flexion angle of the cervical region while typing on the smartphone, assuming that the greater the cervical flexion angle, the greater the text neck. As Damasceno et al.18 we assumed that text neck is excessive neck flexion posture, regardless of whether the person has NP complaints or not. Besides the excellent criterion validity of CROM when compared to an optoelectronic system, the reliability of this device was previously tested and showed an intraclass correlation coefficient of 0.92 for cervical flexion.18–20

The participant was instructed to stand on a cross marked on the floor. In the orthostatic position, the CROM device was placed as if putting on a pair of glasses. The velcro straps were fastened snugly in line with the bows. The participant was asked to send a text message to someone via their smartphone, simulating everyday use (Figure 1). The same orientation was given in the seated position in a chair without armrests. The measurement of the cervical angle with the CROM inclinometer was registered with the participant in an orthostatic and seated position. The assessor was blind to the participants’ answers regarding NP outcomes.
Sample Size
The required sample size for this study was 565 participants, considering prevalence of NP of 22% to detect a mean difference of 4.6° of neck flexion between participants with and without NP, assuming a standard deviation of 13° with an alpha of 5% and a power of 80%. The minimal detectable change value of CROM for neck flexion ranges from 6.5° to 9.6°.22,23

Statistical Analysis
All analyses were performed using RStudio version 0.99.486. Sample characteristics were described using proportions, means, and standard deviations. Logistic regression models were analyzed to investigate the association between the cervical flexion angle during texting—herein an objective measure of text neck—and the point prevalence and frequency of NP outcomes. Linear regression models were used to investigate the association between the cervical flexion angle during texting and maximum pain intensity. Potential confounders (age, sex, height, body mass, phone use time, visual problems, smoking, dependence on smartphone use, physical activity level, anxiety, depression, sleep quality, and social isolation) with a P < 0.2 in the univariate analysis were also included in the logistic regression models or linear regression models. The significance level adopted in the study was 95%.

RESULTS
Our sample was comprised of 71.6% women (n = 417), with a mean age of 27.4 (SD = 8.8) years (Table 1). Most participants (67.8%, n = 395) reported at least 4 hours per day of smartphone use. More than half of participants (53.9%, n = 314) reported some visual problem, and 45.9% (n = 267) wore glasses or contact lenses. Almost half of the sample (46.2%, n = 269) reported worrying about posture occasionally and 36.4% (n = 212) during smartphone use.

Regarding lifestyle, 9.4% (n = 55) of the participants were classified as sedentary, followed by insufficiently active (22.1%, n = 129), active (41%, n = 239), and very active (27.3%, n = 159). Additionally, only 15.1% (n = 89) of participants reported smoking habits and 11.3% (n = 66) reported serious problems with sleep.

Prevalence of NP was 21.4% (n = 125). Regarding frequency of NP, 7% (n = 41) complained very often, 15.6% (n = 91) often, 35.9% (n = 209) occasionally, 32.1% (n = 187) rarely, and 9.2% (n = 54) never complained. The mean of maximum NP intensity was 4.54 (SD = 2.30). Of the total sample, 85.9% (n = 500) never missed school or work, 70.6% (n = 413) never missed sports, and 78.3% (n = 456) never visited a doctor or physiotherapist due to NP. The mean of cervical flexion angle during the use of smartphones while standing was 34.3° (SD = 12.2) and sitting 36.3° (SD = 14.1).

Multiple logistic regression analyses showed that the angle of cervical flexion while standing was not associated with NP (odds ratio [OR] = 1.00; 95% confidence interval [CI] 0.98–1.02; P = 0.66), or frequency of NP (OR = 1.01; 95% CI 1.00–1.03; P = 0.056) (Table 2). The cervical flexion angle while sitting was not associated with the prevalence of NP (OR = 0.99; 95% CI 0.98–1.01; P = 0.89), or frequency of NP (OR = 1.01; 95% CI 0.99–1.02; P = 0.13) (Table 3).

Multiple linear regression analyses showed that the angle of cervical flexion while standing was not associated with the maximum NP intensity (beta coefficient = −5.195 × 10−5; 95% CI: −0.01 to 0.01; P = 0.99) (Table 4). The cervical flexion angle while sitting was not associated with the maximum NP intensity (beta coefficient = 0.002; 95% CI: −0.01 to 0.01; P = 0.71) (Table 5).

The only potential confounders that remained associated with prevalence of NP in the multivariate model were age (OR = 1.04; 95% CI 1.01–1.06; P = 0.001) and sleep quality (OR = 1.28; 95% CI: 1.01–1.61; P = 0.035). For the NP frequency outcome, none of the potential confounders remained associated with NP frequency. For the maximum pain intensity outcome, the three variables that remained associated with maximum NP were sleep quality (beta coefficient = 0.30; 95% CI: 0.10–0.51; P = 0.003), smartphone use time (beta coefficient = 0.11; 95% CI: 0.01–0.21;
DISCUSSION

The present study showed that the angle of cervical flexion, an objective measure of text neck while standing and sitting in adults, was not associated with the prevalence of NP, frequency of NP, or maximum NP intensity. Our results showed that the angle of cervical flexion was not associated with the prevalence or frequency of NP. This finding is consistent with a recently published study by Correia et al., which also found no significant association between text neck and NP.

In terms of other factors, the study found that smoking was associated with a higher prevalence of NP. This is consistent with previous research that has shown smoking to be a risk factor for NP. In contrast, visual impairments and glasses or lens use were not significantly associated with NP prevalence.

The study also found that smartphone use time was not associated with NP prevalence. This is important because it suggests that smartphone use time may not be a significant factor in the development of NP, at least in adults.

The study's findings have implications for the management of NP. While the angle of cervical flexion was not found to be associated with NP, other factors such as smoking and visual impairments should be considered in the assessment and management of NP. The study's findings also suggest that smartphone use time may not be a significant factor in the development of NP, which may have implications for smartphone-related posture and its impact on NP.

Overall, the study's findings highlight the importance of considering a range of factors in the assessment and management of NP, and suggest that further research is needed to fully understand the factors that contribute to NP.
reinforce the findings of the study by Damasceno et al., in which the association between text neck and NP was also not found after subjective assessment of smartphone posture performed by experienced musculoskeletal physiotherapists and the self-perception of the research participants.

Our findings contradict the hypothesis raised by the aforementioned Hansraj study. At the average value found in the standing position (34° vs. Hansraj 60°), the simulated load would be much lower (around 40 lb or 18 kg, vs. 60 lb or 27 kg). Besides that, data from mechanical load on the necks of cadavers showed a resistance of up to 540 lb or 244.9 kgs, nine times higher than mentioned by Hansraj. Moreover, the authors state that in living people the resistive and adaptive capacity of the cervical spine would be even higher. These are aspects of structural biomechanics, but given that pain is multidimensional, it is possible that NP would be influenced by other biopsychosocial factors.

Our sample showed a high level of smartphone dependence, but even this variable was not associated with NP. Alsalameh et al. who used the same dependency scale, identified that 60% of medical students were dependent on smartphones and that such dependency was correlated with musculoskeletal dysfunction. High levels of smartphone use may lead to physical inactivity associated with musculoskeletal disorders in young adults. The high proportion of individuals who use the smartphone for >4 hours daily in our study, as well as the work of Damasceno et al., is a concern due to the possibility of physical inactivity and an increased risk of hand and finger symptoms.

In the present study, we evaluated the cervical flexion adopted during texting through the CROM inclinometer, thus translating a quantitative text neck measure. Therefore, both the subjective analysis and the quantitative analysis of the present study did not associate text neck with NP or frequency of NP.

There were some potential confounders associated with NP outcomes in the present study. Participants with NP were 1.9 years older than asymptomatic subjects. However, the large sample size made it possible to identify small statistically significant differences as for age, physical activity, and smartphone use time. Sleep quality was associated with NP and maximum pain intensity. Increasing the ordinal scale by one level toward poorer sleep quality increased the chance of NP about 28%. Aili et al. showed that sleep disturbance was a predictor of time off work in individuals with cervical or low back pain in a longitudinal study.

![Table 2. OR for the Association Between Text Neck While Standing—Assessed by Cervical Flexion Angle—With Prevalence of Neck Pain (Model 1) and Frequency of Neck Pain (Model 2), Considering Potential Confounders for Each Model](https://www.spinejournal.com/cervical-spine/text-neck-and-neck-pain-correia-et-al)
TABLE 3. OR for the Association Between Text Neck While Sitting—Assessed by Cervical Flexion Angle—With Prevalence of Neck Pain (Model 1) and Frequency of Neck Pain (Model 2), Considering Potential Confounders for Each Model

<table>
<thead>
<tr>
<th></th>
<th>Prevalence of Neck Pain (Model 1)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted OR</td>
<td>95% CI</td>
<td>P</td>
</tr>
<tr>
<td>Cervical flexion angle (CROM(^*)), sitting</td>
<td>0.99</td>
<td>0.98–1.01</td>
<td>0.892</td>
</tr>
<tr>
<td>Age</td>
<td>1.04</td>
<td>1.01–1.06</td>
<td>0.001</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>0.72</td>
<td>0.41–1.27</td>
<td>0.271</td>
</tr>
<tr>
<td>Body mass</td>
<td>1.00</td>
<td>0.98–1.01</td>
<td>0.709</td>
</tr>
<tr>
<td>Smartphone use time</td>
<td>1.11</td>
<td>0.98–1.25</td>
<td>0.088</td>
</tr>
<tr>
<td>Smartphone dependence</td>
<td>1.01</td>
<td>0.98–1.03</td>
<td>0.457</td>
</tr>
<tr>
<td>Anxiety</td>
<td>1.01</td>
<td>0.92–1.11</td>
<td>0.717</td>
</tr>
<tr>
<td>Social isolation</td>
<td>1.06</td>
<td>0.98–1.16</td>
<td>0.128</td>
</tr>
<tr>
<td>Depression</td>
<td>1.01</td>
<td>0.93–1.10</td>
<td>0.705</td>
</tr>
<tr>
<td>Sleep quality</td>
<td>1.28</td>
<td>1.01–1.61</td>
<td>0.035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Frequency of Neck Pain (Model 2)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR-adjusted</td>
<td>95% CI</td>
<td>P</td>
</tr>
<tr>
<td>Cervical flexion angle (CROM(^*)), sitting</td>
<td>1.01</td>
<td>0.99–1.02</td>
<td>0.130</td>
</tr>
<tr>
<td>Height</td>
<td>0.99</td>
<td>0.96–1.01</td>
<td>0.518</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>0.65</td>
<td>0.39–1.09</td>
<td>0.105</td>
</tr>
<tr>
<td>Sleep quality</td>
<td>1.12</td>
<td>0.91–1.36</td>
<td>0.261</td>
</tr>
<tr>
<td>Smartphone use time</td>
<td>1.02</td>
<td>0.93–1.12</td>
<td>0.637</td>
</tr>
<tr>
<td>Smartphone dependence</td>
<td>1.02</td>
<td>0.99–1.04</td>
<td>0.073</td>
</tr>
<tr>
<td>Anxiety</td>
<td>1.05</td>
<td>0.98–1.13</td>
<td>0.156</td>
</tr>
<tr>
<td>Social isolation</td>
<td>1.05</td>
<td>0.97–1.13</td>
<td>0.192</td>
</tr>
<tr>
<td>Depression</td>
<td>0.99</td>
<td>0.92–1.07</td>
<td>0.961</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; CROM, cervical range of motion; OR, odds ratio; VIF, variance inflation factor.\(^*\)Cervical range of motion instrument.

TABLE 4. Beta Coefficients for the Association Between Text Neck While Standing—Assessed by Cervical Flexion Angle—and Maximum Neck Pain Intensity, Considering Potential Confounders

<table>
<thead>
<tr>
<th></th>
<th>Maximum Pain Intensity (0–10)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted Beta Coefficient</td>
<td>95% CI</td>
<td>P</td>
</tr>
<tr>
<td>Cervical flexion angle (CROM(^*)), standing</td>
<td>-5.195×10^{-5}</td>
<td>-0.01 to 0.01</td>
<td>0.995</td>
</tr>
<tr>
<td>Age</td>
<td>0.028</td>
<td>5.40×10^{-2} to 0.05</td>
<td>0.015</td>
</tr>
<tr>
<td>Height</td>
<td>4.383×10^{-4}</td>
<td>-0.02 to 0.02</td>
<td>0.972</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>-0.249</td>
<td>-0.78 to 0.33</td>
<td>0.427</td>
</tr>
<tr>
<td>Sleep quality</td>
<td>0.308</td>
<td>0.99 to 0.51</td>
<td>0.003</td>
</tr>
<tr>
<td>Smartphone use time</td>
<td>0.116</td>
<td>0.01 to 0.21</td>
<td>0.025</td>
</tr>
<tr>
<td>Smartphone dependence</td>
<td>0.021</td>
<td>-8.24×10^{-4} to 0.04</td>
<td>0.058</td>
</tr>
<tr>
<td>Anxiety</td>
<td>0.034</td>
<td>-0.04 to 0.11</td>
<td>0.398</td>
</tr>
<tr>
<td>Social isolation</td>
<td>0.034</td>
<td>-0.04 to 0.11</td>
<td>0.377</td>
</tr>
<tr>
<td>Depression</td>
<td>0.038</td>
<td>-0.03 to 0.11</td>
<td>0.331</td>
</tr>
<tr>
<td>Physical activity (sedentary)</td>
<td>0.353</td>
<td>-0.04 to 0.74</td>
<td>0.078</td>
</tr>
<tr>
<td>Vision problems</td>
<td>0.297</td>
<td>-0.08 to 0.68</td>
<td>0.127</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; CROM, cervical range of motion; VIF, variance inflation factor.\(^*\)Cervical range of motion instrument.
The strength of the present study is the quantitative evaluation of the text neck through the cervical flexion angle measured by the CROM while standing and sitting. In addition, the larger sample size, a range of potential biopsychosocial confounders and a sample with a higher average age when compared to the study of Damasceno et al.¹⁰ were also strengths. The main limitation of this study was the cross-sectional design. The question of whether the participants started to adopt a better posture after having NP could only be responded to with longitudinal studies. Another limitation was that we assessed the point prevalence of NP without differentiating between acute and chronic stages. Although participants were on average 10 years older than the ones on Damasceno et al.’s study, the sample of the present study was still young. In future studies, it would be interesting to investigate whether there is an interaction effect between an objectively measured time spent using smartphones and neck posture with NP in older adults.

Considering the clinical applicability of our findings, there is an evident need for a broader view in the biopsychosocial model and not to focus only on postural changes, in order to always justify a dysfunction or pain through an injury or structural alteration.³⁰ This belief can harm not only health professionals, with excessive requests of imaging exams and interventions, but also the patients, who end up searching for several therapies of low scientific value that often lead to higher chances of developing chronic pain. The results of the present study can help mitigate the impact of negative information regarding text neck and reinforce that the cervical spine is much stronger and resilient than has been claimed in the general media.

Text neck was not associated with NP, frequency of NP, or maximum NP intensity in adults, even when assessed objectively. These results challenge the belief that inadequate neck posture while using smartphones leads to NP.

Key Points

☑️ It has been hypothesized that the flexed posture of the neck and head adopted for reading and typing while using smartphones is related to the increased prevalence of NP and other physical symptoms.

☒ The aim of this study was to investigate the association between text neck and NP in adults.

☒ The prevalence of NP was 21.4% and the mean of cervical flexion angle during the use of smartphones while standing was 34.3° (SD = 12.2) and sitting 36.3° (SD = 14.1).

☒ Text neck was not associated with prevalence of NP, NP frequency, or maximum NP intensity in adults.

References

3. Stähl MK, El-Metwally AAS, Rimpela AH. Time trends in single versus concomitant neck and back pain in Finnish adolescents: